Basket

  Untick selected:   0
  1. SYS0316810
    LBL
      
    -----naa--22--------450-
    005
      
    20231109092506.4
    014
      
    $a 000899199100001 $2 WOS CC. ESCI
    014
      
    $a S0719-06462022000300369 $2 SciELO Citation Index
    014
      
    $a 2-s2.0-85160046976 $2 SCOPUS
    017
    70
    $a 10.56754/0719-0646.2403.0369 $2 DOI
    035
      
    $a biblio/1015985 $2 CREPC2
    100
      
    $a 20230119d2022 m y slo 03 ba
    101
    0-
    $a eng
    102
      
    $a CL
    200
    1-
    $a Dual digraphs of finite semidistributive lattices $f Andrew Craig ... [et al.]
    330
      
    $a Dual digraphs of finite join-semidistributive lattices, meet-semidistributive lattices and semidistributive lattices are characterised. The vertices of the dual digraphs are maximal disjoint filter-ideal pairs of the lattice. The approach used here combines representations of arbitrary lattices due to Urquhart (1978) and Ploščcica (1995). The duals of finite lattices are mainly viewed as TiRS digraphs as they were presented and studied in Craig–Gouveia–Haviar (2015 and 2022). When appropriate, Urquhart’s two quasi-orders on the vertices of the dual digraph are also employed. Transitive vertices are introduced and their role in the domination theory of the digraphs is studied. In particular, finite lattices with the property that in their dual TiRS digraphs the transitive vertices form a dominating set (respectively, an in-dominating set) are characterised. A characterisation of both finite meet- and join-semidistributive lattices is provided via minimal closure systems on the set of vertices of their dual digraphs.
    463
    -1
    $1 001 umb_un_cat*0316879 $1 011 $a 0716-7776 $1 011 $a 0719-0646 $1 200 1 $a Cubo $e a mathematical journal $v Vol. 24, no. 3 (2022), pp. 369-392 $1 210 $a Temuco $c Department of mathematics and statistics of the Universidad de La Frontera $d 2021
    606
    0-
    $3 umb_un_auth*0043554 $a grafové algoritmy
    606
    0-
    $3 umb_un_auth*0088579 $a algebraické štruktúry $X algebraic structures
    606
    0-
    $3 umb_un_auth*0036218 $a matematika $X mathematics
    608
      
    $3 umb_un_auth*0273282 $a články $X journal articles
    700
    -1
    $3 umb_un_auth*0296470 $a Craig $b Andrew $4 070 $9 34
    701
    -0
    $3 umb_un_auth*0002686 $a Haviar $b Miroslav $f 1965- $p UMBFP10 $4 070 $9 33 $T Katedra matematiky
    701
    -1
    $3 umb_un_auth*0296471 $a São João $b José $4 070 $9 33
    801
      
    $a SK $b BB301 $g AACR2 $9 unimarc sk
    856
      
    $u https://revistas.ufro.cl/ojs/index.php/cubo/article/view/3205/2256 $a Link na plný text
    T85
      
    $x existuji fulltexy
  2. SYS0265935
    LBL
      
    02044^^^^^2200253^^^450
    005
      
    20240513090837.9
    014
      
    $a 000436216000006 $2 CCC
    014
      
    $a 000436216000006 $2 WOS CC. SCIE
    014
      
    $a 2-s2.0-85042882888 $2 SCOPUS
    017
    70
    $a 10.1016/j.nuclphysa.2018.02.010 $2 DOI
    035
      
    $a biblio/93639 $2 CREPC2
    100
      
    $a 20181212d2018 m y slo 03 ba
    101
    0-
    $a eng
    102
      
    $a NL
    200
    1-
    $a Fluctuations in non-ideal pion gas with dynamically fixed particle number $f E. E. Kolomeitsev, D. N. Voskresensky
    330
    0-
    $a We consider a non-ideal hot pion gas with the dynamically fixed number of particles in the model with the λφ4interaction. The effective Lagrangian for the description of such a system is obtained after dropping the terms responsible for the change of the total particle number. Reactions π+π−↔π0π0, which deter-mine the isospin balance of the medium, are permitted. Within the self-consistent Hartree approximation we compute the effective pion mass, thermodynamic characteristics of the system and the variance of the particle number at temperatures above the critical point of the induced Bose–Einstein condensation when the pion chemical potential reaches the value of the effective pion mass. We analyze conditions for the con-densate formation in the process of thermalization of an initially non-equilibrium pion gas. The normalized variance of the particle number increases with a temperature decrease but remains finite in the critical point of the Bose–Einstein condensation. This is due to the non-perturbative account of the interaction and is in contrast to the ideal-gas case. In the kinetic regime of the condensate formation the variance is shown to stay finite also
    463
    -1
    $1 001 umb_un_cat*0289346 $1 200 1 $a Nuclear Physics A $v Vol. 973, (2018), pp. 89-103 $1 210 $a Amsterdam $c Elsevier B.V. $d 2018 $1 011 $a 0375-9474 $1 011 $a 1873-1554
    606
    0-
    $3 umb_un_auth*0119138 $a heavy ion collisions
    606
    0-
    $3 umb_un_auth*0110816 $a fluctuations
    606
    0-
    $3 umb_un_auth*0272878 $a Hartree approximation
    606
    0-
    $3 umb_un_auth*0284970 $a Bose-Einsteinova kondenzácia $X Bose-Einstein condensation
    615
      
    $n 53 $a Fyzika
    675
      
    $a 53
    700
    -1
    $3 umb_un_auth*0131258 $a Kolomeitsev $b Evgeni E. $f 1970- $9 50 $4 070 $p UMBFP06 $T Katedra fyziky
    701
    -1
    $3 umb_un_auth*0160605 $a Voskresensky $b Dmitri $4 070 $9 50
    801
      
    $a SK $b BB301 $g AACR2 $9 unimarc sk
    856
      
    $u https://www.sciencedirect.com/science/article/pii/S0375947418300447 $a Link na plný text
    T85
      
    $x existuji fulltexy
  3. SYS0044385
    LBL
      
    00475nx^^^22001813^^450
    005
      
    20190703125221.6
    100
      
    $a 20050223asloy0103 ba
    152
      
    $a AACR2
    250
    -1
    $a regionálna geografia
    450
      
    $7 ba $5 z $a regional geography $8 eng
    801
      
    $a SK $b BB301 $c 20050223
    980
      
    $x K

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.