Basket

  Untick selected:   0
  1. SYS0084810
    LBL
      
    00228nx^^^22001093^^450
    005
      
    20240626142520.9
    035
      
    $a person/98635 $2 CREPC2
    035
      
    $a https://orcid.org/0000-0002-8439-4582 $2 ORCID
    100
      
    $a 20050411asloy0103 ba
    120
      
    $a b
    152
      
    $a AACR2
    200
    -1
    $a Bitušík $b Peter $f 1957-
    801
    -0
    $a SK $b BB301
  2. SYS0316994
    LBL
      
    -----naa--22--------450-
    005
      
    20240813075821.3
    014
      
    $2 EZB
    017
    70
    $a 10.7546/nifs.2022.28.4.413-427 $2 DOI
    035
      
    $a biblio/1023643 $2 CREPC2
    100
      
    $a 20230127d2022 m y slo 03 ba
    101
    0-
    $a eng
    102
      
    $a BG
    200
    1-
    $a Divergence measures on intuitionistic fuzzy sets $f Vladimír Kobza
    330
      
    $a The basic study of fuzzy sets theory was introduced by Lotfi Zadeh in 1965. Many authors investigated possibilities how two fuzzy sets can be compared and the most common kind of measures used in the mathematical literature are dissimilarity measures. The previous approach to the dissimilarities is too restrictive, because the third axiom in the definition of dissimilarity measure assumes the inclusion relation between fuzzy sets. While there exist many pairs of fuzzy sets, which are incomparable to each other with respect to the inclusion relation. Therefore we need some new concept for measuring a difference between fuzzy sets so that it could be applied for arbitrary fuzzy sets. We focus on the special class of so called local divergences. In the next part we discuss the divergences defined on more general objects, namely intuitionistic fuzzy sets. In this case we define the local property modified to this object. We discuss also the relation of usual divergences between fuzzy sets to the divergences between intuitionistic fuzzy sets.
    463
    -1
    $1 001 umb_un_cat*0317198 $1 011 $a 1310-4926 $1 011 $a 2367-8283 $1 200 1 $a Notes on intuitionistic fuzzy sets $v Vol. 28, no. 4 (2022), pp. 413-427 $1 210 $a Sofia $c Balgarska akademiya na naukite $d 2022 $1 710 11 $3 umb_un_auth*0302809 $a International Intuitionistic Fuzzy Sets and Contemporary Mathematics Conference $b medzinárodná konferencia $d 8. $e Mersin $f 16.-19.06.2022
    606
    0-
    $3 umb_un_auth*0127332 $a intuicionistické fuzzy množiny
    606
    0-
    $3 umb_un_auth*0037590 $a fuzzy množiny $X fuzzy sets
    606
    0-
    $3 umb_un_auth*0118264 $a miera divergencie
    606
    0-
    $3 umb_un_auth*0048201 $a entropia
    608
      
    $3 umb_un_auth*0273282 $a články $X journal articles
    700
    -1
    $3 umb_un_auth*0178208 $a Kobza $b Vladimír $f 1988- $p UMBFP10 $4 070 $9 100 $T Katedra matematiky
    801
      
    $a SK $b BB301 $g AACR2 $9 unimarc sk
    856
      
    $u https://ifigenia.org/wiki/Issue:Divergence_measures_on_intuitionistic_fuzzy_sets $a Link na plný text
    T85
      
    $x existuji fulltexy
  3. SYS0097416
    LBL
      
    00457nx^^^22001813^^450
    005
      
    20210810135113.6
    100
      
    $a 20050511asloy0103 ba
    152
      
    $a AACR2
    250
    -1
    $a živá príroda
    450
      
    $7 ba $5 z $a living nature $8 eng
    801
      
    $a SK $b BB301 $c 20050511
    980
      
    $x K

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.