- Dual digraphs of finite meet-distributive and modular lattices
Number of the records: 1  

Dual digraphs of finite meet-distributive and modular lattices

  1. SYS0330501
    LBL
      
    -----naa--22--------450-
    005
      
    20241205123313.1
    014
      
    $a 001301363700005 $2 WOS CC. ESCI
    014
      
    $a 2-s2.0-85210243380 $2 SCOPUS
    017
    70
    $a 10.56754/0719-0646.2602.279 $2 DOI
    035
      
    $a biblio/1204218 $2 CREPC2
    100
      
    $a 20240806d2024 m y slo 03 ba
    101
    0-
    $a eng
    102
      
    $a CL
    200
    1-
    $a Dual digraphs of finite meet-distributive and modular lattices $f Andrew Craig ... [et al.]
    330
      
    $a We describe the digraphs that are dual representations of finite lattices satisfying conditions related to meet-distributivity and modularity. This is done using the dual digraph representation of finite lattices by Craig, Gouveia and Haviar (2015). These digraphs, known as TiRS digraphs, have their origins in the dual representations of lattices by Urquhart (1978) and Ploščica (1995). We describe two properties of finite lattices which are weakenings of (upper) semimodularity and lower semimodularity respectively, and then show how these properties have a simple description in the dual digraphs. Combined with previous work in this journal on dual digraphs of semidistributive lattices (2022), it leads to a dual representation of finite meet-distributive lattices. This provides a natural link to finite convex geometries. In addition, we present two sufficient conditions on a finite TiRS digraph for its dual lattice to be modular. We close by posing four open problems.
    463
    -1
    $1 001 umb_un_cat*0330766 $1 011 $a 0716-7776 $1 011 $a 0719-0646 $1 200 1 $a Cubo $e a mathematical journal $v Vol. 26, no. 2 (2024), pp. 279-302 $1 210 $a Temuco $c Department of mathematics and statistics of the Universidad de La Frontera $d 2024
    606
    0-
    $3 umb_un_auth*0036218 $a matematika $X mathematics
    606
    0-
    $3 umb_un_auth*0037046 $a algebra $X algebra
    606
    0-
    $3 umb_un_auth*0087756 $a teória zväzov
    606
    0-
    $3 umb_un_auth*0000092 $a geometria $X geometry
    608
      
    $3 umb_un_auth*0273282 $a články $X journal articles
    700
    -1
    $3 umb_un_auth*0226852 $a Craig $b Andrew, P. K. $4 070 $9 34
    701
    -0
    $3 umb_un_auth*0002686 $a Haviar $b Miroslav $f 1965- $p UMBFP10 $4 070 $9 33 $T Katedra matematiky
    701
    -1
    $3 umb_un_auth*0306471 $a Marais $b Klarise $9 33 $4 070
    801
      
    $a SK $b BB301 $g AACR2 $9 unimarc sk
    856
      
    $u https://cubo.ufro.cl/index.php/cubo/article/view/3755 $a Link na zdrojový dokument
    T85
      
    $x existuji fulltexy
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.