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Notes on Q-probabilities on intuitionistic fuzzy events

Magdaléna Rencova
Faculty of Natural Sciences, Matej Bel University
Tajovského 40, 074 01 Banska Bystrica, Slovakia

Abstract— Following [9] some properties of Q-probability and
Q-states are studied. Representation theorem of Q-probabilities and
Q-states, the existence of the joint observable and The central limit
theorem are proved.

Keywords— Q-probability, Q-state, representation theorem, intu-
itionistic fuzzy events, joint Q-observable, Central limit theorem.

I Introduction

Although there are different opinions about intuitionistic
fuzzy events, the following definitions are accepted generally
([11, [5])- Let (£2,8) be a measurable space. By an intuition-
istic fuzzy event ([5]) we mean any pair

A = (pa,v4)

of S—measurable functions, such that pa,v4 :  — [0, 1]
and pa +vg < 1.

The function /¢4 is the membership function and the func-
tion v4 is the non-membership function. The family F of all
intuitionistic fuzzy events is ordered in the following way:

A<Bs pa<up,va > vs.

Evidently
ANB = (paAp,vaVug),

AVB={(uaVug,vavg).

Itis easy to see that A,, ~ A ifandonlyif ps,  pa and
VA, \ VA

The notion of intuitionistic fuzzy event is a natural general-
ization of the notion of a fuzzy event. Given a fuzzy event p 4,
the pair (pt4,1 — p4) is an intuitionistic fuzzy event, so intu-
itionistic fuzzy events can be seen as generalizations of fuzzy
events. Hence we want to define probability on intuition-
istic fuzzy events generalizing probability on fuzzy events.
And actually, two constructions were proposed independently
by Gregorzewski [5] and Gerstenkorn [4], both based on the
FLukasiewicz operations

a @b =min(a + b, 1),

a@b=max(a+b—1,0).

Operations &, @ on [0, 1]? (not necessarily Lukasiewicz oper-
ations) can be naturally extended to intuitionistic fuzzy events
in the following way
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g Q= {0,1] is a fuzzy set, then (p, 1 — p) is an IF set
corresponding to this fuzzy set. Similarly as in the classical
case, in the fuzzy case and in the quantum case, a probability
(or state) has been introduced as a mapping m : F — [0, 1]
being continuous, additive and satisfying some boundary con-
ditions. Here the main difference is the additivity which is
now of the following form

m(A) +m(B) =m(A & B)+m(A & B).

There exists a general representation theorem for IF-
probability. If (2, S, P) is a probability space, then to any
Lukasiewicz state m : F —» [0, 1] there exists o € [0, 1} such

that
/ vadP)

m(A) = (1~ a) / p#AdP + ol —
0 o}
forany A € F (see [2]). Of course, the constructions (see [4]
[5]) can be obtained as a very special case.
Generally, there are infinitely many possibilities how to de-

fine additivity
m(A) +m(B) = m(S(A,B)) +m(7T(4,B))

where

T(A.B) = (T(pa, ), Sva,vg))
S, T :[0.1)% — [0.1]
being such binary operations (7" is a t-norm and S is dual t-
conorm [6]), that

The Kolmogorov probability theory has 3 fundamental no-
tions: probability, random variable and expectation. In our
fuzzy case, an analogous situation occurs.

Throughout this paper we consider the following operations
with intuitionistic fuzzy events

A2oB = ((H.A"’%"/,LBV'I)%/\]’; 1——((1-—-»1/_A)’Z'+(],—-—-UB)“)}7/\1),

AGB = (ua,va)Oup, ve) = (ta+up=1)V0; (va+rp)Al).

Remark 1.1 The operation &g was introduced by Yager [6],
the operation ¢ is Lukasiewicz operation. This is a special
case of operations studied in [9], where ¢(u) = u",n € N is

Sixed for each u € [0, 1]. Special case n = 2 is studied in [2].

We are not able to embed the family F with these operations
into an MV-algebra. Of course, we are able to prove probabil-
ity representation theorems, to construct the joint observable
and prove such fundamental theorems as central limit theorem
or laws of large numbers.
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2  Q-probability and Q-observables

Definition 2.1 Let F be the family of all imtuitionistic fuzzy
events, J be the family of all compact subintervals of the unit
interval [0,1]. O-probability is any mapping P : F — J
satisfying the following conditions:

(i) Ao B =(0,1) = P(A &g B) =P(A) +P(B),

(iii) Ay / A = P(An) / P(A).
Here [an, by] |, b], ifan /" a,b, /D)

Remark 2.2 If A is a crisp set, then ug = £4,v4 = &g,
Theorvem 2.7 implies that

Pshare( 4y = (1 - a)p(A) + ar(A)

It follows that there is a large class of examples extending the
classical definition. It makes possible to construct different
models describing some real processes.

Definition 2.3 4 mapping m : F - [0, 1] is called a Q-state,
if the following conditions are satisfied:

() m((1,0))=1, m((0,1))=0;
(i) A5B=(0,1) = m(A &g B) = m(A) +m(B);
(iii) Ay /A = m(Ay) S m(A).

Example 2.4 Ler (0,8, p) be a probability space, then a nat-
ural example of Q-state is a function m : F — [0, 1} defined
by the following

Q

where n & N is fixed natural number.

Let us suppose, that P maps F to J. We will present this
mapping with fanctions P?, P! : F — [0, 1] in the following
manner P(A) = [P’(A), PH(A)], A € F. Shorter notation
is used further on is P = [P*, P4

Theorem 2.5 P : F — [J, is a Q-probability if and only if
PP PE:F — [0,1] are Q-states.

Proof Let us suppose that P is an Q- probability, then since

P(A@®qB) = [P’(A ¢ B). PH(A @q B)),
hence
P*(A) + P’ (B) = P*(A &g B)
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and
Finally

hence
P(Ay) / P°(A) and PHAL) /7 PHA).
The opposite implication can be proved similarly. U
Let us find the representation theorems for Q-states and Q-

probabilities. We are able to find this representation only for
representable Q-probabilities.

Definition 2.6 Q-probability Py = [P}, Pf,}  F - Jis rep-
resentable, if there exist functions f,g : R* — R and proba-
bilities p,r : 8§ — [0. 1}, such that

Po((pa:va)) =

= (7 f (wardp. [-vayar).gl [ uaydp. [ a-vayan).
! 0 Q Q
Definition 2.7 Q-state mg @ F — [0,1] is representable, if
there exist a function | : R* — R and the probabilities p,r
8~ [0,1] such that

mof(easva)) = £ | [ an, [(1- w) -
O Q

Theorem 2.8 Representation Theorem

Let mg : F — [0,1] be a representable Q-state. Then there

exist a € |0.1] and probabilities p.r : F — |0,1] such that

Joreach A e F

mo((pa.va)) = (1-a) / pa"dp + CM(/(l ~va)"dr),
) 9
where n € N is fixed.
Firstly, let us prove the following lemma.

Lemma 2.9 Let £ : [0,1]% — R be an additive and continu-
ous function, then f is linear.

Proof Let f : [0,1]? — R, we show, that for each A € [0, 1]?
and each a € R such that

flad) = af(A).

Consider cases:

&

(I € QF,s0dp,qge Z,(p,q) =1, % > 0.
We have f(A) = f (i—A> +..+7 (14>,
q q

q
where 4 € [0.1]2, s0 %A € [0,1]2.
Then f(A) = qf ( iIA) and so f (%A) = 37(4).
Letus take A € [0,1]* such that 2A € [0, 1]?,
then $ A ¢ [0,1] and
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f(ed) =y (%4) bt ! (éA) -

=pf (34) = o

(1) Since f is continuous and f(rA4) = rf(A) forr € Q*,
such that 4,74 € [0,1}?, by approximating any real
x € Rby mtmnal (a ,l)n ., we get

f(zA) = (lm;v TnA) =
= | E{L T f{A) = x j (4)

Thus we proved that f is linear on [0,1]. t

Proof of Theorem 2.7

Let mg be a representable Q-state, we are looking for a for-
mula for function f from Definition 2.6. From property (i) of
Q-state (Definition 2.2) we get

mo((1,9)) = f‘(/l"’dp,/(l —~M"dr) = f(1,1),
) )

because of that

0 Q
we get

1,0)) = £(1,1) = 1.

Analogously mg((8, 1)) = £(0,0) = 0.
What about additivity? Assume that A © B =

mo((

- (9,1), so
A+ pup < Lva+vp > 1
We get
mg(A &g B) =

= f(/( Y ((a)™ + (np)™)" dp,
Q

/uma~memw+uwwwmwﬂ -----

5

Analogously

mo(A) +mo(B) =
f(f(HA)n'dp’ f(l —~va4)"dr) Jrf(f(ug)"dp, f(l — v )tdr).
Q 0 0 0

Let us denote by

/u_y]p = uy, /,uB(lp = Uy,

o} !
/(J — g )dr = s, /{1 ----- ve)dr = v,
0 0
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we get

mo(A@g B) =
g (A) -+ W’L()(B) =

Fuy + vy ug + va),
Slug,ug) + flog,v9).

Since the property (ii) holds, we have

fur,ug) + flog,v2),

f(lll + Uy, Un + U))

and that is why the function f is linear (f(z + y) = f(z) +
fly) holds). This equality holds by the previous Lemma.
Finaly f is continuous by the (iii) property of Definition 2.2.

[

Theorem 2.10 Representation Theorem of Q-probabilities
If Py is a representable Q-probability, then there exist real
numbers o, § € |0, 1] and probability mesures p, 71,15 : S —
[0, 1] such that ary < Bro that for each A = (jia,va) € F
there holds

Pol(ra,va)) = [(1 -« f(NA)”dP+ a /(1 -

va)"dry, (1~ 3) f( ;LA)“de 31— UA)"dr«u;].
Q s}

Proof Let Po(A) = [P5(A), PE(A)] be repxnsentable
Q-probability. Following Q-states 75, 73'0 could be written by
previous formulas. 0]

3 Q-observables and p-joint -observables

First, let us denote Borelian sets by B(R).

Definition 3.1 4 mapping © : B(R) — F is called a
O-observable, if the following conditions are satisfied:
(i) #(R) = (1.0),z(®) = (0,1);

(i) if ANB = Qthen x(A)ox(B)
2(4) ®q x(B);

(iii) A, /A= z(A,) / z(4).
: B(R)

= (90,1), and 2(AUB) =

Theorem 3.2 Let x — F be an Q-observable, P =

[P*, P« F — J be an Q-probability. Then the functions
Prox . B(R) — [0,1]. Prox : B(R) — [0, 1], are probability
measures.

Proof The proof is straightforward. &

Theorem33 Let x
(A) = (27(4),1
7 Pl B(R)

: B(R) -~ F be an Q-observable,
¥ (A));w € Q. Then the functions
- 10, lj defined by

Pi(/‘l) e (:lrb(A) (W)™

Pl (4) = (a*(A)(w)
are probability measures.

Proof Use instead of p(u) = «™ in Theorem 2.7in [9]. [
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Definition 3.4 Let x.y : B(R) — F be Q-observables. By
the p-joint Q-observable h of x,y we understand a mapping
h: B(R?) — F satisfying the following conditions

(i) h(R?) =
(i) if ANB = ) then h{(A)Oh(B) =
h(A) ég h(B);

An /A= WA, 7 h(A):

h(C x D) = 2(C).y(D) for any C. D € B(R).
here (MC., I/Cv).(lLI); l/D) = (y,g.[.l/[), J (1 . l’c).(l -
VD))

(1,0): h(0) = (0,1);

(0,1) and h{AUB) =

(iii)
(iv)

Remark 3.5 Analogously we can extend Definition 3.4 for fi-
nite collection of Q-observables.

Theorem 3.6 7o any Q-observables x,y : B(R) — F there

exists their p-joint Q-observable h : B(R?) — F.

Proof Use instead of ¢(u) = u™ in Theorem 2.9 in [9]. [

4 Application of Q-observables

Let us mention one version of Central limit theorem: let
(&)52, be a sequence of independent, equally distributed,
square integrable random variables,

E(&) = a,0%(&) = o foralli € N,

Then for any ¢ € R there holds

[lim p ({ v 53—‘-(—%—&--\/-7{ < f}) = ®(t).

2
1 ] —T
e 7 du.
o -
""" =7 bt o

Now we are gomg to formulate an analogous assertion for
Q-observables.
First, we shall mention some useful definitions:

Definition 4.1 For any Q-probability P = [P° P : F — J
and any Q-observable x . B(R) — F we define the expected
values by

&mw:/wmux

R

Ey(x) = /td’Pfi('t)
R

and the variances by

where P, = P° o x, P} = P o x, assuming that the integrals
exist.
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Assume T' = (51, cn&n) o O — R™ s a random vec-
torand g : R® — R is a Borel measurable function (e.g.
glug, ..y upy) = ;;—. ;). Then

RIT
is a transformation of T. Hence we get the following formula

(92 )7 (4) =T (g™ (4))

for any A € B(R). The formula justifies the following defini-
tion.

Definition 4.2 Lel g, R™ — R be a Borel function,
X, ..y B(R) — F be Q-observables, h,, : B(R") — F
their joint observable. Then the g, —transformation of h,,
is a Q-observable y,, : B{(R) — F given by y,(A) =
holgH(A)) for any A € B(R).

Definition 4.3 Let (2,)2%., be a sequence of Q-observables,
(hy)S%y be a sequence of the joint Q-observables hy,

B(R™) — F of xy, 23, ..., Ty (for neN)L,m:F—[0,1] be
a Q-state. The sequence (x,,)75., is independent (with respect
tom), if for anyn € N and any Cy,Ca, ...,Cy, € B(R) there
holds

m(hn(Cy x Cy x ..o x Ch)) = m{x1(Ch))..m(z,(Ch)).
Definition 4.4 4 sequence (x,)55, of Q-observables is
equally distributed, if m(z,(A)) = m{x1(A4)) foranyn € N
and A € B(R).

Theorem 4.5 (Central limit theorem)

Let (z,)5%, be a sequence of independent, equally dis-
uibuled squarc intc,%mbk: Q- obscrwblw where Ey(x,) =
(0, (2n) = of) for each
n € ’\ Then for anyt € R there lhc fo]lowmg holds

—na’ ({(~oc t))) \/)T f (""'E"’du
; t 2
(hm P (%ﬂ(( -G, t))) Z,, [ e T duw).

]

Proof Use Theorem 4.1 in [9].

5 Conclusion

Generalizing some notions proposed in [2] we constructed a
@ --probability theory. The theory includes some known re-
sults (n = 1,n = 2), and also it opens the door for some
other applications. We have proved some representation the-
orems. As an open question and an inspiration for the future
research remains the problem of conditional probabilities for
this framework.
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