CONTENTS | t of contributors | xiv | |---|--| | | | | Introduction: political economy of the environment in the century | | | of ecological crises | 1 | | Éloi Laurent and Klara Zwickl | | | What is political economy of the environment? | 1 | | Inequality and the environment: from blind spots to linkages | 3 | | The purposes, structure, and substance of this handbook | 6 | | Political economy of the environment: a look back and ahead | 13 | | James K. Boyce | | | Inequality and the environment: positive issues | 14 | | Power and social decisions | 14. | | Inequality and the direction of environmental harm | 14 | | Inequality and the magnitude of environmental degradation | 16 | | Values and the environment: normative issues | 18 | | Efficiency | 18 | | | 19 | | Sustainability | 20 | | Justice | 21 | | Multiple criteria and incomplete orderings | 22 | | Concluding remarks | 22 | | | Introduction: political economy of the environment in the century of ecological crises Éloi Laurent and Klara Zwickl What is political economy of the environment? Inequality and the environment: from blind spots to linkages The purposes, structure, and substance of this handbook Political economy of the environment: a look back and ahead James K. Boyce Inequality and the environment: positive issues Power and social decisions Inequality and the direction of environmental harm Inequality and the magnitude of environmental degradation Values and the environment: normative issues Efficiency Safety Sustainability Justice Multiple criteria and incomplete orderings | | PAI | RT 1 | 27 | |-----|---|--------| | Ine | nequality and the environment | | | 2 | The austainability justice payus | 29 | | 3 | The sustainability-justice nexus
Éloi Laurent | | | | Introduction: the social-ecological approach | 29 | | | Tacking stock of our twin crises | 30 | | | How inequality pollutes the planet | 32 | | | Inequality increases the need for environmentally harmful and socially | | | | unnecessary economic growth | 32 | | | Inequality increases the ecological irresponsibility of the richest, within | | | | each country and among nations | 33 | | | Inequality, which affects the health of individuals and groups, diminishes | | | | the social-ecological resilience of communities and societies and weakens | | | | their collective ability to adapt to accelerating environmental change | 34 | | | Inequality hinders collective action aimed at preserving natural resources | 34 | | | Inequality reduces the political acceptability of environmental | | | | preoccupations and the ability to offset the potential socially regressive | | | | effects of environmental policies | 36 | | | The rise of environmental inequality | 37 | | | Air pollution | 39 | | | Risk, noise, and chemical pollution | 40 | | | Exposure to social-ecological disasters | 41 | | | Conclusion: toward a social-ecological policy | 43 | | | | | | 4 | A socio-metabolic perspective on (material) growth and inequality | 47 | | | Anke Schaffartzik and Fridolin Krausmann | | | | Introduction: global growth and inequality | 47 | | | Concepts: a socio-metabolic perspective | 48 | | | Material inequality | 50 | | | Material inequality in the global economy | 50 | | | Metabolic regimes and transitions | 53 | | | Inequality in control over material flows | 54 | | | The inertia of growth | 55 | | | Conclusion: transforming growth | 56 | | 5 | The history of environmental and energy economics through the lens | 100 | | | of political economy | 60 | | | Antoine Missemer | الفراف | | | Introduction | 60 | | | Natural capital in the 1900s | 61 | | | Decoupling in the 1920s | 65 | | | Conclusion | 68 | | 6 | Global environmental and climate justice movements | 7.5 | |---|--|----------| | | David N. Pellow | | | | Introduction: the facts of global environmental inequalities | 75 | | | Environmental injustice and food systems | 76 | | | Environmental injustices, racial capitalism, and settler colonialism | 76 | | | New directions | 78 | | | The facts of climate change and disruption, and climate injustice | 78 | | | The critical environmental justice framework | 79 | | | Applying critical environmental justice to climate justice movements | 81 | | | Pillar one: multiple categories of difference | 81 | | | Pillar two: multiscalar analyses | 82 | | | Pillar three: justice beyond the state? | 82 | | | Pillar four: from expendability to indispensability | 84 | | | Climate change as a wicked problem of genocidal proportions | 85 | | | Conclusions | 86 | | 7 | Global inequalities and climate change | 90 | | | Céline Guivarch and Nicolas Taconet | | | | Poor countries and poor households are the most vulnerable to the | | | | impacts of climate change | 93 | | | Rich countries and individuals contribute disproportionately to climate change | 96 | | | Distributional effects and equity in actions to respond to climate change | 99 | | | Conclusion | 103 | | | | | | 8 | Natural disasters, poverty and inequality | 111 | | | Stéphane Hallegatte and Brian Walsh | 2.2.4 | | | Introduction | 111 | | | Traditional economic assessments do not capture the full impact of | TO STATE | | | disasters on poor people | 112 | | | Disasters have visible impacts on local poverty | 112 | | | Disasters can have permanent impacts on human capital | | | | and well-being through education and health, with poor | | | | children as the main victims | 113 | | | From case studies to a global estimate: disasters | | | | contribute to global poverty | 114 | | | Poor people are disproportionately affected by natural disasters | 115 | | | Exposure: poor people are often (but not always) more likely to | | | | be affected by natural hazards | 115 | | | Vulnerability: poor people lose more (in relative terms) when they | | | | are affected by a natural shock | 116 | | | Socioeconomic resilience: poor people are less able to cope with | | | | and recover from disasters | 117 | | | The need for a better measurement of disaster impacts – modeling | | | | disasters at the household level | 118 | | | A traditional metric: asset losses | 119 | |-----|---|-----| | | Income losses | 119 | | | Consumption losses | 120 | | | Welfare (or well-being) losses and other related metrics | 122 | | | Socioeconomic resilience | 123 | | | A global application of this framework | 124 | | | Implication for policies and actions | 126 | | | Conclusion | 127 | | 9 | Contracts and dispossession | 132 | | | Alfredo R. M. Rosete | | | | Introduction | 132 | | | Agribusiness partnerships: context and theory | 133 | | | Methodology | 136 | | | Findings | 138 | | | Contracts and consequences | 140 | | | Dispossession | 142 | | | Discussion and policy implications | 143 | | | Conclusion | 145 | | 4.0 | No. 1 1 1 1 1 1 1 1 1 1 1 1 A Crica | 149 | | 10 | Natural resources, climate change and inequality in Africa James C. Murombedzi | 142 | | | Introduction | 149 | | | Contemporary natural resources control and inequality | 151 | | | Climate change and inequality | 152 | | | Conclusion: towards an equitable world order? | 155 | | 11 | From Western Pennsylvania to the world | 159 | | | Diane M. Sicotte | | | | Fracked ethane | 160 | | | High-pressure transmission pipelines | 162 | | | Liquid Natural Gas (LNG) terminals | 163 | | | Plastic resin factories | 163 | | | Plastic trash | 164 | | | Conclusion | 165 | | 12 | Latin America caught between inequality and natural capital degradation | 171 | | | Juan-Camilo Cardenas | | | | Introduction: how does Latin America fare in terms | | | | of inequality and the environment | 171 | | | How inequality can affect the protection of natural capital | 173 | | | How do Latin Americans perceive their environmental and social challenges? | 175 | | | Conclusions: a prospecial and environmental agenda ahead | 181 | | 13 | Air quality co-benefits of climate mitigation in the European Union Klara Zwickl and Simon Sturn | 184 | |-----|--|-----| | | Introduction | 184 | | | What are air quality co-benefits and why do they matter? | 184 | | | Why are greenhouse gases and co-pollutants regulated separately? | 186 | | | How large are air quality co-benefits? | 187 | | | What are implications of including air quality co-benefits in | | | | European climate policies? | 189 | | | Conclusion | 191 | | | | | | 14 | Designing urban sustainability | 195 | | | Ian M. Cook and Tamara Steger | | | | Methodology: an 'optimistic' approach | 196 | | | Urban sustainability, environmental justice and projectification | 197 | | | Participatory processes within urban sustainability and justice projects | 199 | | | Inclusivity | 199 | | | Diverse roles | 200 | | | Different kinds of knowledge and ways of knowing | 201 | | | Networks and networking or partnership building | 202 | | | Integration | 203 | | | Calling time on projects? | 204 | | | Conclusion | 204 | | | | | | DAI | RT 2 | | | | om analysis to modelling and policy | 209 | | 15 | From the welfare state to the social-ecological state | 211 | | 13 | Éloi Laurent | 211 | | | Introduction: a welfare state for our era | 211 | | | A genealogy of the social-ecological state | 212 | | | The philosophy of the social-ecological state: from unequal | 212 | | | uncertainty to mutualized risk | 213 | | | Is the social-ecological state a growth state? | 214 | | | The three functions of the social-ecological state | 216 | | | Allocation: a sober hence economical social-ecological state | 217 | | | Distribution and redistribution | 217 | | | Stabilization: a social-ecological state that preserves essential | 217 | | | well-being | 218 | | | The urban social-ecological state | 220 | | | Conclusion: four worlds of the social-ecological state? | 222 | | | Concussion. Jour worths of the social-ecological state: | 444 | | 16 | Promoting justice in global climate policies Michel Bourban | 226 | | | Introduction | 226 | |----|---|-----| | | The philosophy and the economics of climate change | 227 | | | Just mitigation policies | 228 | | | The Paris Agreement | 228 | | | Distributing the costs of mitigation | 229 | | | A just energy transition | 230 | | | Just adaptation policies | 233 | | | The adaptation finance gap | 233 | | | Sharing the costs of adaptation equitably | 234 | | | Avoiding trade-offs | 235 | | | Conclusion | 236 | | | | | | 17 | Carbon pricing and climate justice | 243 | | | James K. Boyce | | | | Effectiveness | 243 | | | The climate policy litmus test | 244 | | | Existing carbon prices | 244 | | | Carbon prices based on neoclassical efficiency: the 'social cost of carbon' | 245 | | | Carbon prices based on science: target-consistent prices | 245 | | | Mechanics of effective carbon pricing | 246 | | | Carbon taxes vs carbon caps | 247 | | | Where to implement the carbon price? | 247 | | | To trade or not to trade? | 248 | | | A uniform international price? | 248 | | | Distributional equity | 249 | | | Carbon rent | 249 | | | Incidence of carbon pricing | 250 | | | Carbon dividends | 250 | | | Net impact of a carbon price-and-dividend policy | 251 | | | Dividends and political sustainability | 252 | | | Carbon pricing in the broader policy mix | 253 | | | Hot spot remediation | 253 | | | Public investment in a just transition | 253 | | | Adaptation for all | 254 | | | Conclusions | 254 | | 18 | Political economy of border carbon adjustment | 258 | | | Paul Malliet and Ruben Haalebos | | | | Introduction | 258 | | | Carbon pricing: theory and reality | 259 | | | The consequences of a fragmented carbon pricing regime | 259 | | | Border carbon adjustment as a solution to fragmentation | 260 | | | The targeted goods | 260 | | | The accounted emissions | 260 | | | Emissions from the energy use | 261 | |----|---|-----| | | Emissions from the process | 261 | | | The taxed countries | 262 | | | Distributive impacts of carbon taxation | 262 | | | Specific distributive impacts of BCAs | 263 | | | Between-countries effects | 263 | | | Within-country effects | 264 | | | Price impact and redistribution strategies: the case of France | 265 | | | Use of the tax and the political constraints | 269 | | | Conclusion | 271 | | | | | | 19 | Political economy of forest protection | 275 | | | Alain Karsenty | | | | Introduction | 275 | | | Part I: Forest, deforestation and its causes | 276 | | | Political economy of defining forests and deforestation | 276 | | | The critical ecological role of forests | 276 | | | Role in human well-being | 277 | | | Defining a forest | 277 | | | The multiple and embedded causes of deforestation | 278 | | | Underlying causes | 278 | | | The first underlying causes: demographic dynamics | 278 | | | Another underlying cause: the continuous increase in food and non-food demand | 279 | | | An underlying socio-cultural cause: the attraction of the | | | | "Asian model" of accumulation | 280 | | | Indirect causes | 280 | | | Local agrarian systems in crisis | 280 | | | Ambiguous land rights | 281 | | | Direct drivers | 281 | | | The role of agricultural dynamics | 281 | | | The "tandem" between logging and agriculture | 281 | | | Are forests commons? | 282 | | | The "global public good" issue | 282 | | | Resources versus services | 283 | | | Local commons? The diverse fortunes of "community forests" | 283 | | | Part II: Forest-related market-based instruments | 284 | | | The attempts to use international trade to tackle deforestation | 284 | | | The rise of independent certification of forests | 284 | | | Tackling illegal logging through bilateral trade agreements | 285 | | | Private and public policies for deforestation-free commodities | 285 | | | Roundtables and certifications | 286 | | | Emerging public policies in producer and consumer countries | 286 | | | Towards an international regime based on results-based payments? | 287 | | | The initial influence of forest experts: planners and managers | 287 | | | The growing influence of theoretical framing by economics | 288 | |----|--|-----| | | A fragmented and ineffective international regime | 288 | | | The uncertain REDD+ process | 289 | | | The thorny issue of non-permanence | 289 | | | National sovereignty and business-as-usual scenario | 290 | | | Strategic behaviour of states? | 291 | | | Is Brazil's "reference level" appropriate? | 292 | | | "Worst-case policy" or common (but differentiated) responsibility? | 293 | | | Part III: Rethinking results-based payments | 293 | | | Patrimonialization and institutionalization | 293 | | | Investment, the neglected priority | 294 | | | Moving away from the reference trap and rethinking | | | | payments for results | 294 | | | Reforming international trade | 295 | | | | | | 20 | Informing the political economy of energy and climate transitions | 303 | | | Patrick Criqui and Henri Waisman | | | | Introduction | 303 | | | Economic assessment models for climate policies: dealing with | | | | global economic effectiveness and equity | 304 | | | 1972–1992: genesis of the integrated energy-economy-environment models | 304 | | | 1992-2014: the "golden age" of integrated assessment models | 305 | | | After 2014: models, from the capital to the Tarpeian rock? | 306 | | | An innovative pathway design framework for informing the political | | | | economy of energy and climate transitions | 307 | | | Country-based narratives, reflecting differing interests, | | | | in a context of deep uncertainty | 308 | | | Modelling development pathways in conjunction with the development goals | 308 | | | A consistent set of quantified and comparable metrics | 310 | | | A framework put in motion by an iterative backcasting approach | 310 | | | Two illustrations of applications of the new analytical approach | 310 | | | Visions of the future in the French National Debate on Energy Transition | 311 | | | Deep decarbonization pathways in support of international | 312 | | | negotiations before COP 21 | 313 | | | Investigating the political economy of carbon neutrality | 313 | | | The radical transformation of socio-technical systems | 314 | | | Changing lifestyles | 315 | | | Considering policy packages addressing social justice in the ecological transition | 316 | | | Revisiting the approach to international equity | 316 | | | Conclusion | 310 | | 21 | Diagnostics and policy tools to measure and mitigate environmental | | | 21 | health inequalities | 320 | | | Iulien Caudeville | | | | | | | | Introduction: the emergence of environmental health inequalities | 320 | |-------|--|-----------| | | Institutional context: the gradual recognition of environmental health inequalities | 322 | | | Segmented EU policies to mitigate EHI at the national level | 322 | | | Territorialized exposome: from theory to operationality | 324 | | | Diagnostics tools to prioritize prevention action | 325 | | | The PLAINE platform: from diagnostics to policy | 328 | | | The PLAINE platform: algorithms and big data | 329 | | | The case of spatial exposure of lead in France | 329 | | | The case of spatial exposure of benzo[a]pyrene in France | 330 | | | The case of spatial exposure of cypermethrin in a region of France | 334 | | | From result ownership to action implementation | 335 | | | Conclusion | 339 | | | | (2) S22 | | 22 | Building on the right to know | 343 | | | Richard Puchalsky, Michael Ash and James K. Boyce | 1021 1020 | | | Introduction | 343 | | | The toxics release inventory: the world's first PRTR | 345 | | | Risk Screening Environmental Indicators: an integrative assessment | | | | model to estimate human health risk from industrial air pollution | 347 | | | Parent assignment: corporate research to assign TRI facilities to ultimate owners | 348 | | | Environmental justice ratios: measuring corporate environmental justice performance | 349 | | | Linking local and global pollutants: the Greenhouse Gas Reporting Program | 350 | | | Extending EJ to greenhouse gas emitters | 351 | | | Assigning responsibility for greenhouse gas emissions | 351 | | | GHGRP EJ ratio analysis for parent companies | 352 | | | Lessons on linkages | 352 | | | Applied and social scientific research | 354 | | | Public intermediation for policy impact | 355 | | | Conclusion | 357 | | 23 | Conclusion | 359 | | | Éloi Laurent and Klara Zwickl | | | | From biophysical limits to social-ecological frontiers | 359 | | | Ecological and digital transitions: friends or foes? | 360 | | | Social-ecological urban environmental justice | 361 | | | Toward a comprehensive assessment of the distributional | | | | impacts of environmental policy | 362 | | | Understanding the belief structures of environmental policy | 364 | | | the property of the second section of the second sections section section sections of the section section section section sections of the section section section sectio | 3.7 | | Ent.o | ex and the second secon | 367 |