Table of Contents

1.	Schauder Bases	. 1
	a. Existence of Bases and Examples	. 1
	b. Schauder Bases and Duality	7
	c. Unconditional Bases	15
	d. Examples of Spaces Without an Unconditional Basis	24
	e. The Approximation Property	29
	f. Biorthogonal Systems	42
	g. Schauder Decompositions	47
2.	The Spaces c_0 and l_p	53
	a. Projections in c_0 and l_p and Characterizations of these Spaces	53
	b. Absolutely Summing Operators and Uniqueness of Unconditional	23
	Bases	63
	c. Fredholm Operators, Strictly Singular Operators and Complemented	-
	Subspaces of $l_p \oplus l_r$	75
	d. Subspaces of c_0 and l_p and the Approximation Property, Complement-	
	ably Universal Spaces	84
	e. Banach Spaces Containing l_p or c_0	95
	f. Extension and Lifting Properties, Automorphisms of l_{∞} , c_0 and l_1 .	104
3.	Symmetric Bases.	113
	a. Properties of Symmetric Bases, Examples and Special Block Bases .	113
	b. Subspaces of Spaces with a Symmetric Basis	123
4.	Orlicz Sequence Spaces	137
	a. Subspaces of Orlicz Sequence Spaces which have a Symmetric Basis .	137
	b. Duality and Complemented Subspaces	147
	c. Examples of Orlicz Sequence Spaces	156
	d. Modular Sequence Spaces and Subspaces of $l_p \oplus l_r$	166
	e. Lorentz Sequence Spaces	175
Re	ferences	180
C	hight Indox	405

Table of Contents

Banach Lattices	1
Basic Definitions and Results	1
b. Concrete Representation of Banach Lattices	14
The Structure of Banach Lattices and their Subspaces Property (u). Weak completeness and reflexivity. Existence of unconditional basic sequences.	31
p-Convexity in Banach Lattices	40
Uniform Convexity in General Banach Spaces and Related Notions. The definition of the moduli of convexity and smoothness. Duality. Asymptotic behavior of the moduli. The moduli of $L_2(X)$. Convergence of series in uniformly convex and uniformly smooth spaces. The notions of type and cotype. Kahane's theorem. Connections between the moduli and type and cotype.	59
Uniform Convexity in Banach Lattices and Related Notions . Uniformly convex and smooth renormings of a $(p>1)$ -convex and $(q<\infty)$ -concave Banach lattice. The concepts of upper and lower estimates for disjoint elements. The relations between these notions and those of type, cotype, p -convexity, q -concavity, p -absolutely summing operators, etc. Examples. Two diagrams summarizing the various connections.	79
The Approximation Property and Banach Lattices. Examples of Banach lattices and of subspaces of l_p , $p \neq 2$, without the B.A.P. The connection between the type and the cotype of a space and the existence of subspaces without the B.A.P. A space different from l_2 all of whose subspaces have the B.A.P.	102
Rearrangement Invariant Function Spaces	114
Basic Definitions, Examples and Results	114

X		Table of Contin

b.		on of E 0, 1]. T oint vec	Boyd in he chai tors ha	racteriz aving	zation c	of Boyd	indice	in term	ns of ex	istence	r.i. function of l_p^n 's for a type (p, q)	11
c.	The Haar Basic result $(1The bound$	s on ma	artingal more g	les. The	e uncon	ditiona ction s	ality of paces o	n [0, 1]				
d.	Some Re The isomo indices and conditional with non-tr	rphism the sp basis.	betwee aces X Subspa	en an (l_2) and (l_3)	r.i. fun d Rad anned b	ction s X. Con y a sub	pace X	on [0,	bspaces	s of X	with an un	-
e.	Isomorphic Structure Isomorphic spaces of t concave r.i.	embed ype 2.	Idings. Unique	Classi eness o	fication f the r.	of sy	mmetri	c basic	sequen	ces in i	r.i. function	18
f.	Applicate The isomorphic spaces in $[0]$ of $L_r(0,1)$ plementation	rphism $(0, \infty)$ iso into L_{μ}	between betwee	en $L_p($ nic to a for $1 \le$	(0, 1) and given r. $(p < r < 1)$	nd $L_p($ i. funct 2 and	0, ∞)∩ ion spa in oth	$L_2(0, \infty)$ ce on [0 er r.i. f	o) for p l, 1]. Iso unction	> 2. R metric space	embedding	5
g.	Interpolation of r.i. functions interpolation	on pairs	s. Gene paces v	eral int	erpolat t uniqu	ion spa	ces and	d applicate. The	Lions-			
Refe	rences											23
Subj	ect Index			. See 58 See 58 See 58 See 58 See 58 See 58							aracia aracia aracia aracia aracia aracia aracia aracia	23