Contents

Preface	v
Chapter 0. Background	1
0.0 Notation and Recap	2
0.1 Exterior Algebra	3
0.2 Differential Calculus	9
0.3 Differential Forms	17
0.4 Integration	25
0.5 Exercises	28
Chapter 1. Differential Equations	30
1.1 Generalities	31
1.2 Equations with Constant Coefficients. Existence of Local	
Solutions	33
1.3 Global Uniqueness and Global Flows	38
1.4 Time- and Parameter-Dependent Vector Fields	41
1.5 Time-Dependent Vector Fields: Uniqueness And Global Flow	43
1.6 Cultural Digression	44
Chapter 2. Differentiable Manifolds	47
2.1 Submanifolds of \mathbb{R}^n	48
2.2 Abstract Manifolds	54
2.3 Differentiable Maps	61
2.4 Covering Maps and Quotients	67
2.5 Tangent Spaces	74

x			Contents	

2.6 Submanifolds, Immersions, Submersions and Embeddings	85
2.7 Normal Bundles and Tubular Neighborhoods2.8 Exercises	90 96
Chapter 3. Partitions of Unity, Densities and Curves	103
3.1 Embeddings of Compact Manifolds	104
3.2 Partitions of Unity	106
3.3 Densities	109
3.4 Classification of Connected One-Dimensional Manifolds	115
3.5 Vector Fields and Differential Equations on Manifolds	119
3.6 Exercises	126
Chapter 4. Critical Points	128
4.1 Definitions and Examples	129
4.2 Non-Degenerate Critical Points	132
4.3 Sard's Theorem	142
4.4 Exercises	144
Chapter 5. Differential Forms	146
5.1 The Bundle $\Lambda^r T^* X$	147
5.2 Differential Forms on a Manifold	148
5.3 Volume Forms and Orientation	155
5.4 De Rham Groups	168
5.5 Lie Derivatives	172
5.6 Star-shaped Sets and Poincaré's Lemma	176
5.7 De Rham Groups of Spheres and Projective Spaces	178
5.8 De Rham Groups of Tori	182
5.9 Exercises	184
Chapter 6. Integration of Differential Forms	188
6.1 Integrating Forms of Maximal Degree	189
6.2 Stokes' Theorem	195
6.3 First Applications of Stokes' Theorem	199
6.4 Canonical Volume Forms	203
6.5 Volume of a Submanifold of Euclidean Space	207
6.6 Canonical Density on a Submanifold of Euclidean Space	214
6.7 Volume of Tubes I	219
6.8 Volume of Tubes II	227
6.9 Volume of Tubes III	233
6.10 Exercises	238
Chapter 7. Degree Theory	244
7.1 Preliminary Lemmas	245
7.2 Calculation of $R^d(X)$	251

Content	8	x
7.3	The Degree of a Map	253
	Invariance under Homotopy. Applications	256
	Volume of Tubes and the Gauss-Bonnet Formula	262
	Self-Maps of the Circle	267
	Index of Vector Fields on Abstract Manifolds	270
	Exercises	273
Chapte	er 8. Curves: The Local Theory	277
8.0	Introduction	278
	Definitions	279
-	Affine Invariants: Tangent, Osculating Plan, Concavity	283
	Arclength	288
	Curvature	290
8.5	Signed Curvature of a Plane Curve	294
	Torsion of Three-Dimensional Curves	297
8.7	Exercises	304
Chapte	er 9. Plane Curves: The Global Theory	312
9.1	Definitions	313
9.2	Jordan's Theorem	316
9.3	The Isoperimetric Inequality	322
9.4	The Turning Number	324
9.5	The Turning Tangent Theorem	328
9.6	Global Convexity	331
9.7	The Four-Vertex Theorem	334
9.8	The Fabricius-Bjerre-Halpern Formula	338
9.9	Exercises	344
Chapte	er 10. A Guide to the Local Theory of Surfaces in R ³	346
10.1	Definitions	348
10.2	Examples	348
10.3	The Two Fundamental Forms	369
10.4	What the First Fundamental Form Is Good For	371
	Gaussian Curvature	382
10.6	What the Second Fundamental Form Is Good For	388
	Links Between the two Fundamental Forms	401
	A Word about Hypersurfaces in \mathbb{R}^{n+1}	402
Chapte	r 11. A Guide to the Global Theory of Surfaces	403

405

407

409

410

Part I: Intrinsic Surfaces 11.1 Shortest Paths

11.2 Surfaces of Constant Curvature

11.4 Shortest Paths and the Injectivity Radius

11.3 The Two Variation Formulas

xii	Contents
11.5 Manifolds with Curvature Bounded Below	414
11.6 Manifolds with Curvature Bounded Above	416
11.7 The Gauss-Bonnet and Hopf Formulas	417
11.8 The Isoperimetric Inequality on Surfaces	419
11.9 Closed Geodesics and Isosystolic Inequalities	420
11.10 Surfaces All of Whose Geodesics Are Closed	422
11.11 Transition: Embedding and Immersion Problems	423
Part II: Surfaces in R ³	
11.12 Surfaces of Zero Curvature	425
11.13 Surfaces of Non-Negative Curvature	425
11.14 Uniqueness and Rigidity Results	427
11.15 Surfaces of Negative Curvature	428
11.16 Minimal Surfaces	429
11.17 Surfaces of Constant Mean Curvature, or Soap Bubbles	431
11.18 Weingarten Surfaces	433
11.19 Envelopes of Families of Planes	435
11.20 Isoperimetric Inequalities for Surfaces	437
11.21 A Pot-pourri of Characteristic Properties	438
Bibliography	443
Index of Symbols and Notations	453
Index	456