Počet záznamov: 1
Characterizations of kites as graceful graphs
SYS 0333364 LBL -----naa--22--------450- 005 20250117084345.0 014 $a 001380524300001 $2 WOS CC. ESCI 017 70
$a 10.56754/0719-0646.2603.367 $2 DOI 035 $a biblio/1259453 $2 CREPC2 100 $a 20241127d2024 m y slo 03 ba 101 0-
$a eng 102 $a CL 200 1-
$a Characterizations of kites as graceful graphs $f Miroslav Haviar, Katarína Kotuľová 330 $a We introduce and study an infinite family of graceful graphs, which we call kites. The kites are graphs where a path is joined with a graph "forming" a kite. We study and characterize three classes of the kites: kites formed by cycles known to be graceful, fan kites and lantern kites. Beside showing in a transparent way that all these graphs are graceful, we provide characterizations of these graphs among all simple graphs via three tools: via Sheppard's labelling sequences introduced in the 1970s and via labelling relations and graph chessboards. The latter are relatively new tools for the study of graceful graphs introduced by Haviar and Ivaška in 2015. The labelling relations are closely related to Sheppard's labelling sequences while the graph chessboards provide a nice visualization of the graceful labellings. 463 -1
$1 001 umb_un_cat*0333529 $1 011 $a 0716-7776 $1 011 $a 0719-0646 $1 200 1 $a Cubo $e a mathematical journal $v Vol. 26, no 3 (2024), pp. 367-386 $1 210 $a Temuco $c Department of mathematics and statistics of the Universidad de La Frontera $d 2024 606 0-
$3 umb_un_auth*0039537 $a grafy $X charts $X graphs 606 0-
$3 umb_un_auth*0130335 $a graciózne ohodnotenie grafov 606 0-
$3 umb_un_auth*0289515 $a grafové šachovnice $X graph chessboards 608 $3 umb_un_auth*0273282 $a články $X journal articles 700 -0
$3 umb_un_auth*0002686 $a Haviar $b Miroslav $p UMBFP10 $4 070 $9 50 $f 1965- $T Katedra matematiky 701 -1
$3 umb_un_auth*0281492 $a Kotuľová $b Katarína $4 070 $9 50 801 $a SK $b BB301 $g AACR2 $9 unimarc sk 856 $u https://cubo.ufro.cl/index.php/cubo/article/view/3808 $a Link na plný text T85 $x existuji fulltexy
Počet záznamov: 1