Vytlačiť
1. Dual digraphs of finite semidistributive lattices
Názov | Dual digraphs of finite semidistributive lattices |
---|---|
Aut.údaje | Andrew Craig ... [et al.] |
Autor | Craig Andrew (34%) |
Spoluautori | Haviar Miroslav 1965- (33%) UMBFP10 - Katedra matematiky São João José (33%) |
Zdroj.dok. | Cubo : a mathematical journal. Vol. 24, no. 3 (2022), pp. 369-392. - Temuco : Department of mathematics and statistics of the Universidad de La Frontera, 2021 |
Kľúč.slová | grafové algoritmy algebraické štruktúry - algebraic structures matematika - mathematics |
Form.deskr. | články - journal articles |
Jazyk dok. | angličtina |
Krajina | Chile |
Anotácia | Dual digraphs of finite join-semidistributive lattices, meet-semidistributive lattices and semidistributive lattices are characterised. The vertices of the dual digraphs are maximal disjoint filter-ideal pairs of the lattice. The approach used here combines representations of arbitrary lattices due to Urquhart (1978) and Ploščcica (1995). The duals of finite lattices are mainly viewed as TiRS digraphs as they were presented and studied in Craig–Gouveia–Haviar (2015 and 2022). When appropriate, Urquhart’s two quasi-orders on the vertices of the dual digraph are also employed. Transitive vertices are introduced and their role in the domination theory of the digraphs is studied. In particular, finite lattices with the property that in their dual TiRS digraphs the transitive vertices form a dominating set (respectively, an in-dominating set) are characterised. A characterisation of both finite meet- and join-semidistributive lattices is provided via minimal closure systems on the set of vertices of their dual digraphs. |
URL | Link na plný text |
Kategória publikačnej činnosti | ADM |
Číslo archívnej kópie | 52754 |
Katal.org. | BB301 - Univerzitná knižnica Univerzity Mateja Bela v Banskej Bystrici |
Báza dát | xpca - PUBLIKAČNÁ ČINNOSŤ |
Odkazy | PERIODIKÁ-Súborný záznam periodika |