- Dual digraphs of finite semidistributive lattices
Počet záznamov: 1  

Dual digraphs of finite semidistributive lattices

  1. SYS0316810
    LBL
      
    -----naa--22--------450-
    005
      
    20231109092506.4
    014
      
    $a 000899199100001 $2 WOS CC. ESCI
    014
      
    $a S0719-06462022000300369 $2 SciELO Citation Index
    014
      
    $a 2-s2.0-85160046976 $2 SCOPUS
    017
    70
    $a 10.56754/0719-0646.2403.0369 $2 DOI
    035
      
    $a biblio/1015985 $2 CREPC2
    100
      
    $a 20230119d2022 m y slo 03 ba
    101
    0-
    $a eng
    102
      
    $a CL
    200
    1-
    $a Dual digraphs of finite semidistributive lattices $f Andrew Craig ... [et al.]
    330
      
    $a Dual digraphs of finite join-semidistributive lattices, meet-semidistributive lattices and semidistributive lattices are characterised. The vertices of the dual digraphs are maximal disjoint filter-ideal pairs of the lattice. The approach used here combines representations of arbitrary lattices due to Urquhart (1978) and Ploščcica (1995). The duals of finite lattices are mainly viewed as TiRS digraphs as they were presented and studied in Craig–Gouveia–Haviar (2015 and 2022). When appropriate, Urquhart’s two quasi-orders on the vertices of the dual digraph are also employed. Transitive vertices are introduced and their role in the domination theory of the digraphs is studied. In particular, finite lattices with the property that in their dual TiRS digraphs the transitive vertices form a dominating set (respectively, an in-dominating set) are characterised. A characterisation of both finite meet- and join-semidistributive lattices is provided via minimal closure systems on the set of vertices of their dual digraphs.
    463
    -1
    $1 001 umb_un_cat*0316879 $1 011 $a 0716-7776 $1 011 $a 0719-0646 $1 200 1 $a Cubo $e a mathematical journal $v Vol. 24, no. 3 (2022), pp. 369-392 $1 210 $a Temuco $c Department of mathematics and statistics of the Universidad de La Frontera $d 2021
    606
    0-
    $3 umb_un_auth*0043554 $a grafové algoritmy
    606
    0-
    $3 umb_un_auth*0088579 $a algebraické štruktúry $X algebraic structures
    606
    0-
    $3 umb_un_auth*0036218 $a matematika $X mathematics
    608
      
    $3 umb_un_auth*0273282 $a články $X journal articles
    700
    -1
    $3 umb_un_auth*0296470 $a Craig $b Andrew $4 070 $9 34
    701
    -0
    $3 umb_un_auth*0002686 $a Haviar $b Miroslav $f 1965- $p UMBFP10 $4 070 $9 33 $T Katedra matematiky
    701
    -1
    $3 umb_un_auth*0296471 $a São João $b José $4 070 $9 33
    801
      
    $a SK $b BB301 $g AACR2 $9 unimarc sk
    856
      
    $u https://revistas.ufro.cl/ojs/index.php/cubo/article/view/3205/2256 $a Link na plný text
    T85
      
    $x existuji fulltexy
Počet záznamov: 1  

  Tieto stránky využívajú súbory cookies, ktoré uľahčujú ich prezeranie. Ďalšie informácie o tom ako používame cookies.