- Rigidity and flexibility of polynomial entropy
Počet záznamov: 1  

Rigidity and flexibility of polynomial entropy

  1. SYS0331742
    LBL
      
    -----naa--22--------450-
    005
      
    20240926002104.7
    014
      
    $a 001208905100001 $2 CCC
    014
      
    $a 001208905100001 $2 WOS CC. SCIE
    014
      
    $a 2-s2.0-85186346041 $2 SCOPUS
    017
    70
    $a 10.1016/j.aim.2024.109591 $2 DOI
    035
      
    $a biblio/1218079 $2 CREPC2
    100
      
    $a 20240924d2024 m y slo 03 ba
    101
    0-
    $a eng
    102
      
    $a NL
    200
    1-
    $a Rigidity and flexibility of polynomial entropy $f Samuel Roth, Zuzana Roth ... [et al.]
    330
      
    $a We introduce the notion of a one-way horseshoe for topological dynamical systems and show that, quite surprisingly, it plays the same role in the theory of polynomial entropy as the notion of a horseshoe plays in the theory of topological entropy. Indeed, we show that the existence of a one-way horseshoe gives a lower bound for polynomial entropy and for maps of the interval also conversely, polynomial entropy is given by one-way horseshoes of iterates of the map, analogously to Misiurewicz's theorem on topological entropy and standard 'two-way' horseshoes. As a consequence we get a rigidity result that if the polynomial entropy of an interval map is finite, then it is an integer. Furthermore, for interval maps of Sharkovskii type 1 the polynomial entropy can also be computed by what we call chains of essential intervals. We further describe the possible values of polynomial entropy of maps of all Sharkovskii types. We then apply our tools to the classic logistic family, showing that the polynomial entropy increases weakly monotonically with the parameter, making discrete jumps up at bifurcation points along the perioddoubling cascade. On the other hand, we show that in the class of all continua the polynomial entropy of continuous maps is very flexible. For every value alpha is an element of [0, infinity] there is a homeomorphism on a continuum with polynomial entropy alpha. We discuss also possible values of the polynomial entropy of continuous maps on dendrites.
    463
    -1
    $1 001 umb_un_cat*0331778 $1 011 $a 0001-8708 $1 011 $a 1090-2082 $1 200 1 $a Advances in mathematics $v Vol. 443 (2024), pp. 1-44 $1 210 $a Amsterdam $c Elsevier B.V. $d 2024
    606
    0-
    $3 umb_un_auth*0048201 $a entropia
    606
    0-
    $3 umb_un_auth*0039538 $a dendrity
    606
    0-
    $3 umb_un_auth*0089079 $a flexibilita $X flexibility
    608
      
    $3 umb_un_auth*0273282 $a články $X journal articles
    700
    -1
    $3 umb_un_auth*0296686 $a Roth $b Samuel $4 070 $9 34
    701
    -1
    $3 umb_un_auth*0307137 $a Roth $b Zuzana $4 070 $9 33
    701
    -0
    $3 umb_un_auth*0022260 $a Snoha $b Ľubomír $f 1955- $p UMBFP10 $4 070 $9 33 $T Katedra matematiky
    801
      
    $a SK $b BB301 $g AACR2 $9 unimarc sk
    856
      
    $u https://www.sciencedirect.com/science/article/pii/S0001870824001063 $a Link na plný text
    T85
      
    $x existuji fulltexy
Počet záznamov: 1  

  Tieto stránky využívajú súbory cookies, ktoré uľahčujú ich prezeranie. Ďalšie informácie o tom ako používame cookies.